Coarse-to-Fine Statistical Shape Model by Bayesian Inference
نویسندگان
چکیده
In this paper, we take a predefined geometry shape as a constraint for accurate shape alignment. A shape model is divided in two parts: fixed shape and active shape. The fixed shape is a user-predefined simple shape with only a few landmarks which can be easily and accurately located by machine or human. The active one is composed of many landmarks with complex shape contour. When searching an active shape, pose parameter is calculated by the fixed shape. Bayesian inference is introduced to make the whole shape more robust to local noise generated by the active shape, which leads to a compensation factor and a smooth factor for a coarse-to-fine shape search. This method provides a simple and stable means for online and offline shape analysis. Experiments on cheek and face contour demonstrate the effectiveness of our proposed approach.
منابع مشابه
Regularized Active Shape Model for Shape Alignment
Active shape model (ASM) statistically represents a shape by a set of well-defined landmark points and models object variations using principal component analysis (PCA). However, the extracted shape contour modeled by PCA is still unsmooth when the shape has a large variation compared with the mean shape. In this paper, we propose a regularized ASM (R-ASM) model for shape alignment. During trai...
متن کاملCoarse-to-fine MCMC in a seismic monitoring system
We apply coarse-to-fine MCMC to perform Bayesian inference for a seismic monitoring system. While traditional MCMC has difficulty moving between local optima, by applying coarse-to-fine MCMC, we can adjust the resolution of the model and this allows the state to jump between different optima more easily. It is quite similar to simulated annealing. We will use a 1D model as an example, and then ...
متن کاملPseudo-Likelihood Inference Underestimates Model Uncertainty: Evidence from Bayesian Nearest Neighbours
When using the K-nearest neighbours (KNN) method, one often ignores the uncertainty in the choice of K. To account for such uncertainty, Bayesian KNN (BKNN) has been proposed and studied (Holmes and Adams 2002 Cucala et al. 2009). We present some evidence to show that the pseudo-likelihood approach for BKNN, even after being corrected by Cucala et al. (2009), still significantly underest...
متن کاملBayesian reconstruction of binary media with unresolved fine-scale spatial structures
We present a Bayesian technique to estimate the fine-scale properties of a binary medium from multiscale observations. The binary medium of interest consists of spatially varying proportions of low and high permeability material with an isotropic structure. Inclusions of one material within the other are far smaller than the domain sizes of interest, and thus are never explicitly resolved. We c...
متن کاملSpatial Inference of Nitrate Concentrations in Groundwater
We develop a method for multi-scale estimation of pollutant concentrations, based on a nonparametric spatial statistical model. We apply this method to estimate nitrate concentrations in groundwater over the mid-Atlantic states, using measurements gathered during a period of ten years. A map of the fine-scale estimated nitrate concentration is obtained, as well as maps of the estimated county-l...
متن کامل